Влияние органических и минеральных удобрений на микрофлору почвы

Тема IV Агрохимия и питание растений | Автор топика: Claud

Учебная дисциплина о химических процессах в почве и растениях, минеральном питании растений, применении удобрений и средств химической мелиорации почв.

Включает определение содержания в почвах и растениях химических элементов, белков, аминокислот, витаминов, жиров, углеводов; установление механического и минералогического состава почв, содержания в них органической части (гумуса), солей, водорослей, микроорганизмов и др. Изучает влияние удобрений на растения и почву и включает в себя:

Предмет, методы и задачи агрохимии. История развития агрохимии. Повышение плодородия почв и оптимизация питания растений.
Предмет, методы и задачи агрохимии среди фундаментальных и прикладных наук.
История развития. Учения о питании растений и формировании агрохимии как науки.
Агрохимия и плодородие почвы.
Питание растений
Виды удобрений, их химический состав и свойства, условия повышения эффективности и методы оптимизации доз их применения.
Минеральные удобрения.
Органические удобрения, их виды и эффективное использование.
Известкование и гипсование почв.
Научные основы системы применения удобрений.
Понятия о системе удобрений и основные положения системы удобрения в севообороте.
Система удобрения отдельных культур в севообороте.
Экологические проблемы и функции агрохимии. Экономическая и энергетическая эффективность использования агрохимических средств.
Экологическая оценка агрохимических средств. Пути возможного загрязнения окружающей среды удобрениями.
Экологические функции агрохимии.
Экономическая и энергетическая эффективность применения удобрений.

школа (Arkady) Агрохимия - история становления науки

Агрохимия, наука о химических и биохимических процессах в растениях и среде их обитания, а также о способах химического воздействия на эти процессы с целью повышения плодородия почвы и урожая с.-х. культур. Агрохимия одна из наук, входящих в агрохимию. Отдельные её разделы неразрывно связаны с физиологией растений, химией, биохимией, почвоведением, микробиологией, земледелием и растениеводством.

Основные объекты, традиционно изучаемые агрохимией растения, почва и удобрения. В 20 веке сфера агрохимии расширилась: она стала изучать также агробиоценоз в целом, химические средства защиты растений и регуляторы роста растении.

Агрохимические исследования включают: определение содержания в почвах и растениях химических элементов, белков, аминокислот, витаминов, жиров, углеводов; установление механического и минералогического состава почв, содержания в них органической части (гумуса), солей, водорослей, микроорганизмов и др.; изучение влияния удобрений на растения и почву и др. Обычно сначала исследования ведут в лаборатории методами, аналогичными тем, которые применяют в химии, биологии и др. смежных науках. Затем, как правило, проводят вегетационные опыты в теплице с участием живых растений. Рекомендации для практического применения агрохимических средств и методов выдают на основании полевых опытов, а также производственных испытаний, проводимых на больших площадях в течение ряда лет.

Многие приемы агрохимии (например, применение ряда органических удобрений) вошли в практику земледелия в глубокой древности и описаны еще в 1 в. н.э. Как наука агрохимия сформировалась лишь в 19 в., когда сложились основные представления о том, из чего состоят, чем и как питаются растения. Как вехи на пути становления агрохимии обычно отмечают опыты Я. Б. ван Гельмонта (1634), осветившие роль воды в питании растений, а также высказывания М.В.Ломоносова (1753) и А.Лавуазье (1761) о воздухе как источнике питательных веществ, вскоре подтвержденные опытами Дж. Пристли, Я. Ингенхауза, Ж. Сенебье и Н. Соссюра, показавшими, что растения поглощают из воздуха СО2; и выделяют О2; и что это связано с фотосинтезом.

Наиболее трудным оказался вопрос о корневом питании растений. Представления о том, что растения поглощают из почвы минеральные соли (Б. Палисси, 1563; А. Лавуазье, 1761; А. Т. Болотов, 1770), долгое время наталкивались на сопротивление сторонников так называемой гумусной теории питания растений (И. Валериус, 1761) и окончательно утвердились лишь в 19 в. после работ Ж. Буссенго (1836) и Ю. Либиха (1840) и особенно после разработки метода гидропоники (В. Кноп, Ю. Сакс, 1859), в котором растения выращиваются без участия почв. Большую роль в становлении агрохимии сыграли Ж. Буссенго и Ю. Либих. Первый развил представления о круговороте веществ в земледелии, роли азота в питании растений, разработал методологию агрохимических исследований. Второй обосновал теорию истощения почв вследствие выноса питательных веществ растениями и показал необходимость возврата этих веществ в виде минеральных удобрений. Связь агрохимии с микробиологией была обоснована Г. Гельригелем (1886) и С. Н. Виноградским (1893), выяснившими роль азотфиксирующих бактерий в природе и земледелии.

Становление отечественной школы агрохимии связано с именами М.Г.Павлова, А. Н. Энгелыардта, Д.И.Менделеева, К. А. Тимирязева, П. А. Костычева, Д. Н. Прянишникова, П. С. Коссовича, К. К. Гедройца и др., внесших существенный вклад в агропочвоведение и науку об удобрении почв. В послереволюционный период их работы продолжила плеяда советских агрохимиков во главе с Д. Н. Прянишниковым.

Современная агрохимия значительно отличается от «классической агрохимии» конца 19 начала 20 вв., она пользуется несравненно более совершенными методами исследования, опирается на возросший уровень знаний, развитую химическую промышленность и широкую сеть агрохимических служб. Так называемых «зеленая революция» -резкое повышение урожайности с.-х. культур, достигнутое в начале 50-х гг. 20 в., связана не только с успехами генетики

школа (Arkady) В почве выделяются 3 фазы: твердая, жидкая (почвенный раствор) и газообразная (почвенный воздух).
Почвенный воздух. Характеризуется повышенным содержанием СО2. Постоянный газообмен между почвой и атмосферой приводит к обогащению надземного слоя воздуха углекислотой и улучшает воздушное питание растений. Избыточное содержание СО2 в почвенном воздухе приводит к подкислению почвенного раствора, что в свою очередь приводит к усилению растворения минеральных соединений почвы (фосфаты, карбонаты и др.), то есть возрастает доступность питательных соединений.
Избыток СО2 приводит к ухудшению дыхания роста корневой системы, а следовательно и растения в целом.
Почвенный раствор. Вода с растворенными в ней веществами (солями, кислотами, основаниями), газами и содержащимися в ней микроорганизмами называется почвенным раствором. Это самая динамичная и активная часть почвы. Содержание в нем катионов и анионов определяется, в первую очередь, типом почвы.
Для питания растений особенно важно содержание и соотношение в растворе Ca, Mg, K, NH4, NO3, SO4, H2PO4 ионов.
Концентрация солей в почвенном растворе зависит от типа почвы. Обычно она составляет сотые доли процента (около 0, 05%). При концентрации солей в почвенном растворе более 0, 2%, они оказывают вредное влияние на растение. На засоленных почвах концентрация солей может достигать нескольких процентов.
Изучение свойств и состава почвенных растворов, а также физиологических особенностей растений позволило разработать метод гидропоники. Этот метод широко используется в практике мирового сельского хозяйства.
Твердая фаза почвы состоит из минеральной части (90-99% массы твердой фазы) и органической.
Органическое вещество почвы – это совокупность всех органических веществ, находящихся в форме гумуса и остатков животных и растений. Содержание гумуса в почве – важный показатель ее потенциального плодородия, активности в ней всех биологических процессов. На долю гумуса приходится 85-90% от общего количества органического вещества почвы.
• Количество гумуса в пахотных почвах зависит от типа почвы, природно-климатических условий, специализации севооборота, характера и интенсивности земледелия.
• При рациональном применении органических и минеральных удобрений в севооборотах с многолетними бобово-злаковыми травами содержание гумуса в почве возрастает, а качество его улучшается.
• Если удобрения не применяются, содержание гумуса снижается, что подтвердили исследования во всех зонах нашей страны.

школа (Arkady) Роль гумуса в питании растений и баланс гумуса

1. Гумус – источник элементов питания для растений. В нем содержится 98-99% азота, 30-40% фосфора, 90% серы от общего содержания их в почве.
2. Гумусовые кислоты совместно с неспецифическими органическими и минеральными кислотами разрушают почвенные силикаты и алюмосиликаты, растворяют карбонаты кальция и магния, фосфаты, делая их доступными для растений.
3. Гумусовые кислоты в высокодисперсном состоянии могут выступать в микроколичествах как стимуляторы роста растений.
4. Органические вещества почвы – источник пищи микроорганизмов. При отмирании микроорганизмов происходит высвобождение доступных для растений форм питательных элементов.
5. Органическое вещество почвы участвует в адсорбционных процессах в почве, повышая ее поглотительную способность и буферность, улучшает физические свойства почв (влагоемкость, водо- и воздухопроницаемость, тепловой режим.


Причины потерь гумуса пахотными почвами

1. Уменьшение количества растительных остатков, поступающих в почву, при смене естественного агроценоза агроценозом.
2. Усиление минерализации органического вещества в результате интенсивной обработки и повышения степени аэрации почв.
3. Деградация гумуса из-за применения физиологически кислых удобрений и активации микрофлоры из-за вносимых удобрений.
4. Усиление минерализации из-за осушительных мероприятий и орошения.
5. Водная и ветровая эрозия почв.
Определение расходов гумуса пахотного горизонта почвы сводится к определению азота, израсходованного культурой. Если принять среднее содержание азота в гумусе за 5%, то при выносе 100 кг этого элемента с урожаем растений почва потеряет 2000 кг/га гумуса.

Баланс гумуса
Для определения баланса гумуса необходимо также знать коэффициент гумификации. Коэффициент гумификации представляет собой долю углерода органических остатков, включающегося в состав гумусных веществ почвы. Коэффициент гумификации для корневых и пожнивных остатков зерновых и многолетних трав приравнивается к коэффициенту гумификации подстилочного навоза, а для пропашных он в 2 раза меньше. Для навоза коэффициент гумификации составляет 20-25% при содержании сухого вещества 25-50%.

Ожидаемый запас гумуса в почве за звено севооборота рассчитывается по формуле:
St = (So + KrAt)(1-Km),
где St – запасы гумуса через t лет (т/га), So – исходные запасы гумуса (т/га), Kr – коэффициент гумификации пожнивных остатков в долях единицы, A– количество поступающих в почву свежих органических веществ, т/га, t – время (годы), Km–коэффициент минерализации гумуса.

школа (Arkady) Свойства, определяющие плодородие.
Эффективное плодородие - 45-60 ц зерновых с 1 га или 65-75 кормовых единиц
1. Состояние ППК и кислотность, рНсол.=6, 0-6, 5, сумма поглощенных оснований – 7-12 ммоль, степень насыщенности основаниями -80-90%, подвижный Аl - отсутствует
2. Гумус в пахотном горизонте: содержание 2, 5-3%, запас – 75-85 т/га, валовой N – 3-4 т/га, соотношение Сгк:Сфк =1, 1-1, 2.
3. Водно-воздушный режим: Плотность -1, 1-1, 2 г/см3, порозность 50-55%, воздухоемкость 25-30%, запас продуктивной влаги к началу вегетации в слое 0-50 см -150-180 см.
4. Характеристика пахотного горизонта: Мощность 25-30 см, хорошо выраженная мелко-комковатая структура, содержание водопрочных агрегатов размером 0, 25 мм -70-80%, подзолистый горизонт отсутствует.
5. Содержание доступного азота -3-4 мг/100 г или 100-120 кг/га, из них за вегетацию растения потребляют 50-60%
6. Содержание подвижного Р 25-30 мг/100 г или 600-700 кг/га, из них на вегетацию растение потребляет 7-9% (50-60 кг/га).
7. Содержание обменного К 20-22 мг/100 г или 500-550 кг/га, из них 40-50% потребляется растениями на вегетацию.
8. Микроэлементы, мг/кг:
МЕДЬ -3-4,
КОБАЛЬТ – 0, 8-1, 2,
МОЛИБДЕН – 0, 2-0, 4,
БОР – 0, 2-0, 6
ЦИНК – 5-7


Факторы, поддерживающие плодородие

1. Известкование
2. Восполнение органического в-ва
3. Сохранение oптимального баланса NPK

школа (Arkady) Питание растений


Питание растений – один из важнейших факторов их жизни. В процессе питания происходит обмен веществ между растениями и окружающей средой.
Неорганические вещества почвы, атмосферы и воды поступают в растение, где используются в синтезе сложных органических соединений, а ряд веществ выводится из растительного организма в окружающую среду.
Вся жизнь на Земле обусловлена созидательной работой высших и низших растений. Зеленые растения земного шара ежегодно образуют в пересчете на глюкозу до
400 млрд т свежих органических веществ, в том числе 115 млрд т на суше. При этом связывается до 170 млрд т СО2 и разлагается при фотолизе в растениях 130 млрд т воды с выделением 115 млрд т свободного кислорода. Для синтеза органических веществ на земле растения используют до 2 млрд т азота и 6 млрд т зольных элементов.
Существует автотрофный и симбиотрофный (микотрофный и бактериотрофный) типы питания растений.
У большинства растений преобладает автотрофный тип питания (греч. «троф» – «пища»), т.е. самостоятельное обеспечение азотом и неорганическими элементами почвы и углекислым газом, из которых синтезируются органические вещества самого растения. Кроме зеленых фотосинтезирующих растений к автотрофным организмам относятся некоторые бактерии, осуществляющие углеродное питание путем фотосинтеза или хемосинтеза.
Симбиотрофное питание предполагает участие в минеральном питании растений бактерий (бактериотрофное питание) или грибов (микотрофное питание).
При симбиотрофном типе питания наблюдается взаимное использование продуктов обмена веществ для питания. Границы симбиоза не всегда определены, поэтому часто трудно определить пользу, приносимую одним организмом другому.
При симбиозе высшего растения с грибами микориза гриба обеспечивает высшее растение водой и растворенными в ней минеральными солями и другими веществами, грибы же используют углеводы и ряд органических соединений, синтезируемых высшим растением. Биологическое значение микоризы заключается также и в увеличении поглощающей поверхности корней высшего растения за счет развития мицелия гриба. В последние годы открыты микоризные грибы, улучшающие питание высших растений фосфором, особенно на почвах с низким содержанием доступных форм этого элемента.
Наиболее наглядным примером бактериотрофного типа питания растений является симбиоз клубеньковых бактерий с бобовыми растениями. При создании условий, обеспечивающих эффективный симбиоз, величина биологической фиксации азота достигает несколько сотен килограммов на 1 га в год.
Ежегодно в почву в результате симбиотической фиксации поступает до 40×106 т азота.

школа (Arkady) Фотосинтез

Через листья осуществляется углеродное питание растений (фотосинтез), т.е. происходит ассимиляция зелеными листьями углекислого газа из атмосферы с помощью солнечной энергии. Поэтому фотосинтез называют еще воздушным питанием растений.
6СО2 + 6Н2О + 674 ккал ®С6Н12О6 + 6О2
Солнечная энергия, поглощаемая в процессе фотосинтеза, расходуется на разложение воды на кислород и водород. Освободившийся кислород частично используется на дыхание растений, а большая часть его выделяется в атмосферу. Что касается водорода, то он дает, по-видимому, начало еще не изученным веществам, которые активно присоединяют углекислый газ без предварительного разложения его на углерод и кислород.
Образовавшиеся в процессе фотосинтеза простые сахара представляют исходный материал для синтеза сложных углеводов: сахарозы C12H22O11, крахмала (C6H10O5)n, клетчатки (C6H10O5)n, а также белков, жиров, органических кислот и др. Прямыми продуктами фотосинтеза могут быть не только углеводы, но и некоторые органические вещества, в частности белки. Образование углеводов и белков происходит в хлоропластах.
Направленность действия фотосинтетического аппарата зависит от видовых особенностей растения, возраста листьев и всего растения, интенсивности и качества света (красный свет – углеводы, синий – белки), уровня азотного питания и др.
Существуют два пути синтеза белка: не зависящий от света (связано со сложными процессами вторичного превращения углеводов) и фотосинтетический (протекает только на свету в хлоропластах и не связан с превращением углеводов).
Поглощение света хлорофиллом а – наиболее активно при длине волны 400-500 нм и 650-700 нм (синяя и красно-оранжева я части спектра).
Образование органических веществ в процессе фотосинтеза происходит с поглощением большого количества солнечной энергии. Однако лишь небольшая ее часть (2–4%), попадающая на поверхность вегетирующих растений, используется ими на синтез органических веществ. Остальная часть солнечной энергии используется на транспирацию, а также, отражаясь, бесследно теряется в атмосфере. За период вегетации растение испаряет воды в 300–500 раз больше, чем вес его сухого урожая.
Растение испаряет воду для охлаждения. Процесс испарения связан с большой затратой тепла. На испарение листьями расходуется не менее 25, а в южных районах до 70–95% энергии солнечных лучей, попадающих на растение. Это приблизи-тельно в 10–45 раз больше, чем запасается в урожае растений.

школа (Arkady) Транспирация и ф/с


Образование АТФ при фотофосфорелировании


Макроэргические фосфатные связи и макроэргические соединения можно разделить на две основные группы:
1) глицерофосфат, 3-фосфоглицериновая кислота, глюкозо-6-фосфат, фруктозо-6-фосфат и некоторые другие соединения (у соединений этой группы величина свободной энергии гидролиза фосфатной связи колеблется от 0, 8 до 3, 0 ккал на 1 М);
2) аденозинтрифосфорная кислота (АТФ), аденозиндифосфорная кислота (АДФ), 1, 3-дифосфоглицериновая кислота, фосфоэнолпиро-виноградная кислота и некоторые другие вещества (у соединений этой группы величина свободной энергии гидролиза фосфатной связи колеблется в пределах от 6 до 16 ккал на 1 М).
Растение может усваивать через лист:
Серу в форме SO3
Азот мочевины СО(NH2)2
Микроэлементы
Тяжелые металлы
Галогены
Органические соединения

Корневая система растений
При прорастании зерновки трогается в рост главный зароды-шевый корень, затем появляются несколько новых зародышевых корешков. После начала кущения от стебля у основания листьев образуются узловые, или, как их еще называют, придаточные, корни, которые формируют вторичную корневую систему, выполняющую ту же функцию, что и зародышевые корни. Каждый корень имеет три основные зоны:
1) зону роста и растяжения длиной 1, 5 мм – именно за счет деления клеток этой верхушечной меристемы происходит рост корня;
2) зону корневых волосков, или всасывания, характеризу-ющуюся наличием особых выростов – корневых волосков длиной до 1 мм, а длина самой этой зоны 1–2 см;
3) зону боковых корней.
В полевых условиях выращивания основное значение в питании растений принадлежит зоне корневых волосков, так на-зываемой поглощающей зоне.
От корня к листьям движется восходящий, или транспирационный, ток водных растворов солей. Ассимиляционный, нисходящий, ток органических веществ направляется от листьев к корням.
Восходящий ток осуществляется почти исключительно по трахеальным элементам ксилемы, а нисходящий – по сотовидным элементам флоэмы.
Скорость передвижения продуктов фотосинтеза из листьев в корни 40–100 см/ч. Еще быстрее поступают через корневую систему растений элементы питания, в том числе и внесенные в почву удобрения.
Например, при погружении ячменя корнями в раствор, содержащий меченый фосфор 32Р, его находили в листьях через 5 мин. Из корешков четырнадцатидневной кукурузы он поступал в листья через 2 мин.
Скорость поглощения питательных веществ существенно изменяется с возрастом корня. Так, по мере старения растений кукурузы (с 20 до 80 дней) скорость поглощения N, Р, K, Са и Mg уменьшается в десятки раз и более.

Синтетическая функция корней
Корни являются не только органами поглощения минеральных элементов и воды. Они обладают синтетической способностью. В них образуются многие органические соединения: белки, аминокислоты, амиды, алкалоиды, фитогормоны.

школа (Arkady) Типы поглощения элементов питания корнями

Поглощение элементов минерального питания растениями в зависимости от характера затрачиваемой энергии может быть активным и пассивным.
Зона всасывания богата митохондриями – источниками энеогии для активного поглощения элементов питания.
Ионы, вошедшие в контакт с корнем, адсорбируются клеточными стенками. Процесс адсорбции ионов корнями носит обменный характер.
Высокую интенсивность обмена веществ, значительную скорость поступления и передвижения веществ в растениях можно объяснить адсорбционным обменом между корневой системой растений, с одной стороны, и почвенными коллоидами (твердая фаза), а также почвенным раствором (жидкая фаза) – с другой.
Между корневой системой растений и почвенными коллоидами, а также почвенным раствором существует тесный контакт.
Благодаря этому контакту и происходит процесс обменной адсорбции, сущность которого состоит в следующем. Питательные ионы (например, К+, Са 2+, Mg 2+, NH4+, NO3–, H2PO4–, SO42–) поступают в растения через корневую систему в обмен на ионы Н +, НСО3–, расположенные на поверхности корневых волосков.
Появившиеся на поверхности корневого волоска питательные катионы и анионы неизбежно входят в соприкосновение с базоидной (основной) и ацидоидной (кислотной) частями плазмы клетки, и здесь они дают начало различным органическим соединениям или пере-двигаются до листьев, где также синтезируются органические вещества.
Важно учесть, что поглощение питательных элементов корневой системой растений может происходить не только в обмен на ионы Н+ и НСО3–, образующиеся в процессе дыхания, но и на ионы органических и минеральных соединений, выделяемые корнями.
Установлено, например, что корни растений выделяют лимонную, яблочную, щавелевую и другие органические кислоты, которые слабо диссоциируют, но все же распадаются на Н+ и органические анионы. Эти ионы находятся на поверхности корневых волосков и могут принимать участие в обменных реакциях на соответствующие катионы и анионы почвенного раствора.

Активное воздействие корневых систем на почву

Растение не является только потребителем уже готовых для него питательных веществ в почве. Корни растений активно воздействуют на почву, находящуюся у их поверхности. Хорошо известна способность корней выделять во внешнюю среду органические и минеральные вещества (сахара, органические кислоты, азотсодержа-щие органические соединения, витамины, ферменты и др.).
Выделенные корнями органические вещества служат пищей для микроорганизмов, которые в процессе жизнедеятельности способствуют мобилизации питательных веществ почвы, повышая их доступность для растений в участках, непосредственно примыкающих к корням.
Корни некоторых растений (например, фасоли и других двудольных) могут при недостатке некоторых элементов повышать кислотность почвы, в результате чего соединения переходят в растворимое состояние.
Растения выделяют в почву фитосидерофоры (мугеиновая и дезоксимугеиновая, овиновая кислоты), повышающие доступность для растений ряда металлов.

школа (Arkady) Типы поглощение питательных веществ
Метаболическое поглощение и перемещение питательных веществ зависит от:
1. Аэробного дыхания
2. Температуры воздуха и влажности почвы
3. Концентрации почвенного раствора

Неметаболическое, или пассивное, поглощение
В меньшей мере зависит от температуры и других условий жизни растительного организма. Примером неметаболического поглощения является пиноцитоз – захват части питательного раствора, при котором клетками молодых корешков могут поглощаться ионы, молекулы, их агрегаты и капельки раствора.




Питательные элементы

В состав растения входят почти все элементы периодической системы Д.И. Менделеева. Однако физиолого-биохимическая роль некоторых из них еще недостаточно изучена.
В наибольшем количестве растения поглощают азот, фосфор, калий, кальций, магний, серу.
Эти элементы называют макроэлементами. Их содержание в растениях исчисляется целыми процентами или десятыми долями их.
При сжигании органического вещества все элементы, кроме азота, остаются в золе, поэтому их часто называют зольными элементами.
Растениям необходимы также элементы, потребляемые ими в небольших количествах, но играющие важную роль в различных процессах обмена веществ. Их называют микроэлементами. Это железо, бор, цинк, марганец, медь, молибден, кобальт, йод и др.
Их содержание их в растении исчисляется сотыми и тысячными долями процента.

Макроэлементы – S, N; P, K, Ca, Mg (зольные эл-ты).
Микроэлементы – B, Co, Cu, Fe, Mn, Mo, Zn, I.

Механизмы подачи питательных веществ к поверхности корня
Корневой перехват. Корни в процессе роста движутся в почве. Соприкасаясь с питательными веществами, они поглощают их.
Массовый поток. Корни растений поглощают из почвы воду, что вызывает движение почвенного раствора через толщу почвы к корням. Так как в почвенном растворе содержатся питательные вещества, то они и переносятся массовым потоком к поверхности корня, становясь доступными для поглощения.
Диффузия. Поглощение корнем питательного вещества сопровождается уменьшением его концентрации у поверхности корня и возникновением градиента концентрации. А это делает возможной диффузию питательного вещества к корню. Скорость диффузии ионов через почву изменяется в зависимости от типа почвы и природы поглощения ионов почвой.

школа (Arkady) Избирательное поглощение и понятие физиологической кислотности и щелочности солей
Растение поглощает больше тех элементов, в которых нуждается.
(NH4+, Cl-), (NH4+, NO3-)– физиологически кислая соль
(Na+, NO3-) – физиологически щелочная соль

Антагонизм ионов
Катионы антагонисты: H+, K+, NH4+, Ca2+, Mg2+
Анионы антагонисты: Cl-, NO3-, HCO3-, SO42-, H2PO4-

Антагонизм, синергизм и физиологически уравновешенный раствор
Ионы, имеющие одинаковый заряд, взаимно тормозят друг друга, и чем ближе зарядность, тем сильнее их взаимное торможение.
Ионы с противоположными зарядами взаимно ускоряют поступление их в растение. Это явление получило название синергизма.
Вредный избыток какого-либо катиона или аниона всегда можно ослабить соответствующим ионом. При необходимости прибавлением противоположного по заряду иона ускоряют поступление полезного иона. Например, поступление иона NО3– можно ускорить прибавлением катиона Ca2+, вредный избыток Ca2+ в известной степени ослабляет Mg2+, а вредное действие ионов Н+ и Аl3+, которые вызывают кислотность почвы, устраняют прибавлением в раствор Са2+ и Mg2+.
Физиологически уравновешенным следует считать такой почвенный раствор, в котором катионы и анионы находятся в оптимальном соотношении, что обеспечивает наиболее эффективное использование растением питательных веществ.

На питание растений оказывает влияние и общая концентрация почвенного раствора. При избыточной концентрации растения завядают и погибают. Верхний предел обычно находится в интервале 2–3 г всех питательных солей на 1 л раствора. Особенно вредна повышенная концентрация микроэлементов.
Чувствительность к концентрации у разных растений неодинакова. Наибольшей чувствительностью к повышенной концентрации отличаются лен, люпин, огурцы. Чувствительность одного и того же растения меняется с возрастом. Более чувствительны к повышенной концентрации молодые растения.
Растения, чувствительные к высоким концентрациям почвенного раствора – актинидия, багульник.

школа (Arkady) Воздушный, водный и тепловой режимы почвы

Воздух необходим для дыхания корней, при плохой аэрации нарушается питание растений. Потребность корней в кислороде невелика – в среднем 1 мг на 1 г сухого вещества в сутки, однако и этого количества растение может не иметь. Оптимизация воздушного режима достигается оструктуриванием почвы и осушением переувлажненных почв.

Реализация потенциальной продуктивности культурных растений возможна при оптимальном водном режиме.
Вода составляет 70-90% массы растения, участвует в биохимических реакциях. Связующий каркас протоплазмы. Водные растворы солей – основной источник корневого питания растений.

Дефицит влаги (преобладание испарения над поступлением воды в растение)
Снижается интенсивность фотосинтеза, вплоть до полного его прекращения.
Изменяется обводненность и вязкость протоплазмы.
Подавляется синтез белков и хлорофилла.
Происходит распад нуклеиновых кислот, фосфатидов, нуклиопротеидов, резко снижается переход минерального фосфора в органические соединения.
Ухудшается водоснабжение растения.
Повышается осмотическое давление почвенного раствора, токсическое действие удобрений, особенно азотных.
Удобрения, используемые для питания растений, являются одним из внешних факторов, существенно влияющих на водоснабжение растений.
Удобрения, как правило, снижают расход воды на образование единицы урожая на 10–20% и больше. Лучший эффект получается от применения фосфорных удобрений и при их сочетании с азотом и калием.

Тепловой режим
Корни растения не могут развиваться и усваивать пищу при низкой температуре. Весной, на холодных почвах растения медленно развиваются не из-за недостатка пищи и воды, а потому, что корневая система не способна поглотить воду и питательные ионы в холодной среде.
Отрицательное влияние на поступление питательных веществ в растения оказывает и чрезмерно высокая температура. Для поступления азота и фосфора в растения оптимальная температура почвы – 15-20°С.

Световой режим
Важным фактором, влияющим на питание растений, является свет. Поглощение питательных веществ корневой системой растения и использование их в синтетических процессах на свету происходят активнее, чем в темноте. При плохом же освещении процесс фотосинтеза протекает слабее, затормаживается поступление ассимилятов в корневую систему, а следовательно, ослабляется поступление питательных элементов в растение.
Загущение посевов приводит к снижению величины урожая.
Поздняя уборка покровной культуры ухудшает условия перезимовки клевера.
Многоярусная посадка многолетних декоративных растений усиливает риск плохой перезимовки.

школа (Arkady) Питание растений АЗОТОМ

Азот входит в состав: белков, нуклеиновых кислот, нуклеопротеидов, хлорофилла, алкалоидов, фосфатидов.
Доступные растениям азотистые соединения образуются главным образом из органического вещества почвы в результате его разложения.
Количество органического вещества зависит от вида угодья.
Большие запасы азота в органическом веществе находятся в почве под лугами и сенокосами; при распашке же происходит интенсивная их минерализация.
Главный источник азота в почве – перегной (гумус), но он непосредственно не используется на питание растений, так как азот в нем находится в недоступной форме.
В гумусе содержится около 5% азота.
Только 1-3% от общего запаса азота почвы находится в минеральной, доступной для растений форме.

Параметры гумусного состояния почв - …
Цикл азота
Азот атмосферы
Атмосферные
выпадения
Азот урожая
Минеральные азотные удобрения
Газообр. потери
Орг. удобрения
азот раст. остатков
Эрозионные процессы
Биологическая фиксация
Денитрификация
Азот орг. в-ва
NO3
NH3
Вымывание
Глобальный цикл азота
В атм. 4∙1015 м3 азота
10% - электрическая фиксация
30% - пром. фиксация
60% - биологическая фиксация

школа (Arkady) Несимбиотическая азотфиксация
Фиксация азота несимбиотическими микроорганизмами зависит от многих причин. Факторы, ограничивающие жизнедеятельность, а следовательно, и активность этих микробов, следующие:
1) недостаток в почве усвояемых углеводов;
2) отсутствие достаточного количества фосфора и калия;
3) кислая реакция почвы;
4) низкая температура;
5) недостаток или избыток влаги в почве;
6) условия аэрации.
(Clostridiumpacterianum, например, живет в анаэробных условиях, Azotobacterchroococcum – в аэробных).
Свободноживущие азотфиксации на дерново-подзолистых пахотных почвах способны, в среднем, накапливать в год от 5 до15 кг связанного азота на 1 га. Величина азотфиксации свободно-живущими бактериями для различных почвенно-климатических условий составляет от 7, 5 до 42, 0 кг азота на 1 га за год.
Размеры несимбиотической азотфиксации под рисом достигают 60–70 кг 1 га за год.
В затопляемых почвах под растениями риса фиксируется до 57–63 кг азота на 1 га, в незатопляемых – 3–7 кг азота на 1 га за сезон.
Без растений в затопляемых почвах азотфиксация составляет 23–28 кг/га.
Признаки и причины нарушения азотфиксации у бобовых
Иннокуляцию не проводили - растение желтеет, нет клубеньков (в почве нет нужных штаммов)
- растение желтеет, много мелких белых клубеньков (в почве нет
активных симбионтов).
- Растения зеленые, клубеньков нет (в почве много азота, эффективных штаммов нет)
- Растение зеленое, много активных клубеньков (в почве много активных штаммов, нет
необходимости в искусственной инокуляции).
- Растение зеленое, клубеньков мало (почва богата азотом, есть активные штаммы)
Инокуляция проведена - Растение желтеет, клубеньков нет (бактерии погибли, либо выбран неправильный штамм)
- Растение ярко-зеленое, клубеньки мелкие, белые (в почве много азота)
- Растение зеленое, много клубеньков, розовых внутри.
Закон Либиха - «Урожай растений определяет элемент, находящийся в минимуме, хотя бы и все другие элементы были в оптимуме."
http://selo-delo.ru/7-agrokhimiya-i-plodorodie-pochvy..

школа (Arkady) Удобрения и их классификация
Удобрения — это вещества, содержащие элементы, необходимые для питания растений или регулирования свойств почвы. По составу удобрения подразделяются на:
МИНЕРАЛЬНЫЕ:

Азотные удобрения
Фосфорные удобрения
Калийные удобрения
Микроэлементы
Комплексные удобрения
Специализированные комплексные бесхлорные удобрения

ОРГАНИЧЕСКИЕ И ОРГАНО-МИНЕРАЛЬНЫЕ:

Гуминовые удобрения
Жидкие гуминовые органо-минеральные удобрения и подкормки

БАКТЕРИАЛЬНЫЕ
Фитогормоны
Стимуляторы роста
Мелиоранты и дренаж

школа (Arkady) МИНЕРАЛЬНЫЕ УДОБРЕНИЯ

Минеральные удобрения содержат элементы питания в виде минеральных солей. Преимущественно их получают искусственным путем из природных соединений или синтезируют в промышленных условиях.
Минеральные удобрения — это соединения, способные при внесении в почву растворяться и диссоциировать на ионы в почвенном растворе, чрезвычайно необходимые для жизни растений, поскольку содержат азот, фосфор, калий и прочие нужные элементы в легкоусвояемой форме. С точки зрения химической номенклатуры, подавляющее большинство минеральных удобрений — это соли. Им принадлежит важная роль в повышении урожайности сельскохозяйственных культур — за счет их применения можно получить не менее половины прироста урожая. Минеральные удобрения часто называют туками, а промышленность, производящую их, туковой. В России создана мощная туковая промышленность, которая сейчас выпускает более 40 видов минеральных удобрений, употребимых, как правило, для всех культур.

Минеральные удобрения получают химической или механической обработкой неорганического сырья, но полученные химической являются более питательными.

Минеральные удобрения могут быть простыми (односторонними) и комплексными (многосторонними). Простые удобрения содержат один основной элемент питания: азот, фосфор и калий. Комплексные удобрения содержат два и более компонента. Подразделяют удобрения на макро- и микроудобрения. Макроудобрения содержат макроэлементы — азот, фосфор, калий, магний, кальций, серу, т.е. те элементы, которые входят в состав растений, а следовательно, и потребляются в значительных количествах. Микроудобрения (борные, цинковые, марганцевые и пр.) содержат химические элементы, которые вовлекаются в растения в очень малых количествах. Соответственно и потребление растениями этих элементов значительно ниже, но потребность в них отнюдь не меньше.

школа (Arkady) Чтобы классифицировать минеральные удобрения по агрохимическому воздействию, разработана следующая иерархия:

Прямые удобрения

Простые (односторонние) удобрения

а) Азотные

б) Фосфорные

в) Калийные

г) Микроудобрения

Комплексные (многосторонние) удобрения

а) По составу:

—Двойные

—Тройные (полные)

—Четвертичные (полные с добавкой)

б) По способу получения:

—Сложные

—Сложно-смешанные

—Смешанные

Косвенные (мелиоративные) удобрения или материалы (а также иногда выделяют:

косвенно-прямые)

а) Известковые

б) Сульфатные

Кроме этого, минеральные удобрения, поступающие в продажу, по агрегатному состоянию делятся на порошкообразные, гранулированные, крупнокристаллические, жидкие, суспензированные. Гранулированное и крупнокристаллическое удобрение имеет ряд преимуществ по сравнению с порошковым: его легче хранить (не слеживается), удобнее вносить в почву с помощью туковых сеялок, но главное — на большинстве почв оно дает более высокий прирост урожая.

Также различают физиологически-кислые, физиологически-щелочные и физиологически-нейтральные удобрения. К физиологически-кислым относятся такие удобрения, из которых растение энергично поглощает катион, а анион подкисляет почвенный раствор: сульфат и нитрат аммония, хлорид и сульфат калия, а также карбамид. Они подкисляют почву вследствие способности нитрифицирующих бактерий окислять аммиак до азотной кислоты. К физиологически-щелочным относятся такие удобрения, из которых анион ассимилируется растением, а катион, постепенно накапливаясь, подщелачивает почвенную среду, например нитраты натрия, калия и кальция.

школа (Arkady) В настоящее время сельское хозяйство ориентируется на использование концентрированных и комплексных удобрений: из азотных удобрений — на аммиачную селитру и карбамид, из фосфорных— на двойной суперфосфат, из калийных — на хлористый калий, из комплексных главным образом на сложные и смешанные на фосфатах аммония. Основные требования сельского хозяйства к ассортименту удобрений и их качеству:

ассортимент минеральных удобрений должен быть по возможности шире представлен комплексными удобрениями со следующим соотношением действующих веществ: 1:1:1, 1:1:1, 5 1:1:0, 5 1:1:0 0:1:1, 5 1:1, 5:1 1 : 1, 5 : 1, 5, 1, 5 : 1 : 1, 1:4:0 1 : 2, 5 : 0.

школа (Arkady) Техника внесения удобрений

Удобрения можно вносить до посева, во время посева и в период вегетации растений. В любом случае необходимо руководствоваться тем, что в удобрении нуждаются растения, а не почва, почему и вносить удобрения надо так, чтобы они максимально полно использовались растениями, а следовательно, они должны быть как можно ближе к корневой системе растений.
Различают 2 способа внесения удобрений: сплошное внесение и местное (локальное) внесение. При использовании сплошного метода удобрение рассеивают по всей засеваемой площади, а затем заделывают в почву плугом, бороной или культиватором.

Местное удобрение вносят в рядки, лунки, борозды. Конечно, такое «адресное» внесение более эффективно, чем разбросное.
По срокам внесения различают удобрение допосевное (основное), припосевное (рядковое) и послепосевное (подкормка).

Основное удобрение. Минеральные удобрения вносят в почву ранней весной или осенью, во время подготовки почвы. Такое внесение удобрений называют основным. В почву обычно вносят полную норму навоза и около 2/3 нормы минеральных удобрений, предназначенных для данной культуры. Это удобрение запахивают плугами с предплужниками. Если его заделать в почву мелко, растение слабее использует из него питательные вещества, так как верхний слой почвы летом часто пересыхает, и мельчайшие корни с корневыми волосками, через которые происходит поступление воды и солей в растение, высыхают и отмирают. Вносить основное удобрение хорошо, равномерно разбрасывая сухое удобрение на определенной площади с тем, чтобы потом заделго в почву
Припосевное удобрение. Рядковое удобрение используют в небольшом количестве при посеве семян или посадке клубней, корней, рассады. Цель припосевного удобрения — обеспечить молодые растения хорошо усваиваемым минеральным питанием в начале их роста. Для припосевного удобрения пригодны только быстродействующие вещества. Их заделывают в почву мелко, на 2, 5—5 см глубже посева семян или посадки корней, рассады. В некоторых случаях возможно даже внесение удобрений с семенами высеваемой культуры. Припосевное удобрение способствует ускорению роста растений и лучшей их устойчивости к неблагоприятным условиям погоды, болезням и вредителям.

Послепосевное удобрение. В летнее время, в период роста и плодоношения растений несколько раз в почву вносят удобрения дополнительно. В этом случае говорят о подкормке, т.е. о внесении легкоусвояемых растениями форм удобрений во время их роста. В подкормке можно дать те вещества, в которых растения больше всего нуждаются в определенные периоды их жизни. Например, ранней весной озимые испытывают недостаток в азоте, поэтому подкормка их в этот период оказывает положительное влияние на урожай. Весной с началом роста побегов, листьев, корней растениям необходимы подкормки азотными удобрениями, и как можно раньше. За лето целесообразно делать две подкормки—в июле и августе. Плодовые культуры подкармливают главным образом азотными удобрениями, но при обильном плодоношении при второй подкормке (в августе) вносят также калийные и фосфорные удобрения. Чрезмерная подкормка азотными удобрениями приводит к буйному росту листьев, что уменьшает сопротивление растений болезням. Кроме того, листья долго не опадают и деревья не успевают подготовиться к зиме. Поэтому плодовым растениям следует давать азотные подкормки лишь до конца июля, чтобы древесина успела как следует вызреть. Лучше всего делать подкормку, поливая землю водным раствором удобрения.

школа (Arkady) Азотные удобрения

Азотные удобренияАзот входит в состав тех сложных соединений, из которых состоит белок — основа всего живого. Азот необходим для создания хлорофилла и витаминов. При плохом азотном питании содержание хлорофилла в листьях уменьшается, они теряют интенсивную зеленую окраску, становятся светло-зелеными, размер листовой пластинки уменьшается, рост побегов ослабевает.

Растения поглощают азот в течении вегетационного периода неравномерно. Наибольшее количество его потребляется в период усиленного роста листьев, побегов и плодов. Интенсивность потребления азота зависит от погодных условий и влажности почвы. При засухе обилие азота не нужно, оно даже вредит растениям.

Рекомендуем вносить азотные удобрения не за один прием, а за несколько: рано весной, после цветения, а иногда и летом, в период усиленного роста побегов и плодов. При постепенном внесении азотных удобрений нужно учитывать погодные условия, силу роста растения, величину ожидаемого урожая.

Сильный недостаток азота снижает зимостойкость растений, так как они не могут накопить достаточного количества углеводов, необходимого для хорошей зимовки. Однако избыток азота в осенний период затягивает вегетационный период, и растения не успевают своевременно закончить рост и приобрести нужную зимостойкость. Чтобы избыток азота не причинил вреда, полезно усилить фосфорное и калийное питание.

Карбамид (N-46%), Селитра аммиачная подроюная классификация азотных удобрений- ниже

Tags: Влияние органических и минеральных удобрений на микрофлору почвы

Переработка навоза КРС, куриного помета в органическое удобрение еще во времена СССР

органические и минеральные удобрения оказывают влияние на почву.В чём влияние и сходно,а в чём различается? | Автор топика: Марина

Виктор органические удобрения повышают содержание подвижных элементов питания в почве, обогащают ее органическим веществом, которое служит питанием для большого числа обитателей почвы Павел , служат основой для формирования гуминовых и фульво кислот - основы гумуса. основной их недостаток, это то, что они могут быть источником патогенной микрофлоры и семян сорных растений.
минеральные удобрения лишены вышеуказанных недостатков, но они обладают высокой химической активностью, т. е. имеют физиологически кислую или щелочную среду Никита , чем могут смещать кислотность в ту или иную сторону, но благодаря буферности почвы, для существенного смещения кислотности необходимы очень высокие дозы на большом протяжении. кроме того большинство минеральных удобрений используются растениями в первый год их внесения, оказывая не значительно влияние на последующие годы Руслан. органические же оказывают свое действие после внесения на 2-3 года, не считая перехода в гумус

Раиса мин. закисляют почву, в этом вред.

Диана Вот вам ссылка на удобрения растительного происхождения можно делать самому из корня окопника [ссылка заблокирована по решению администрации проекта] и никакой химии.

Андрей минеральные не обязательно закисляет некоторые и подщелачивают.
самое главное органики это СО2, и гуматы кальция образующие структурные отдельности почв. посредством образования пленки на гранях.
минеральные чисто раствор образуют, эффективнее весной. по сравнению с органикой.

Самодельный трактор с двигателем Лифан
Руководство по эксплуатации зерноуборочного комбайна Case ih 2388 af
Норма высева ярового ячменя в Украине
Показать / написать / закрыть комментарий(ии)